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Abstract. We analyze the phase diagram of a system of spin-1/2 Heisenberg antiferromagnetic chains
interacting through a zig-zag coupling, also called zig-zag ladders. Using bosonization techniques we study
how a spin-gap or more generally plateaux in magnetization curves arise in different situations. While for
coupled XXZ chains, one has to deal with a recently discovered chiral perturbation, the coupling term
which is present for normal ladders is restored by an external magnetic field, dimerization or the presence
of charge carriers. We then proceed with a numerical investigation of the phase diagram of two coupled
Heisenberg chains in the presence of a magnetic field. Unusual behaviour is found for ferromagnetic coupled
antiferromagnetic chains. Finally, for three (and more) legs one can choose different inequivalent types of
coupling between the chains. We find that the three-leg ladder can exhibit a spin-gap and/or non-trivial
plateaux in the magnetization curve whose appearance strongly depends on the choice of coupling.

PACS. 75.10.Jm Quantized spin models – 75.40.Cx Static properties (order parameter, static suscepti-
bility, heat capacities, critical exponents, etc.) – 75.45.+j Macroscopic quantum phenomena in magnetic
systems

1 Introduction

In the last few years, the study of quasi-one dimen-
sional magnets has become intense. One of the main rea-
sons is the appearance of real materials which can be
well approximated by one-dimensional models. An im-
portant class corresponds to the so-called spin ladder
materials, such as the compounds Srx−1CuxO2x−1 and
La4+4xCu8+2xO14+8x which are closely related to high-
Tc compounds (for reviews see e.g. [1,2]) or the organic
two-leg ladder material Cu2(C5H12N2)2Cl4 (see e.g. [3]).

In addition, the similarities in the normal-state prop-
erties of high-temperature superconductors and ladder
cuprates make these latter systems valuable laboratories
from both the theoretical and experimental point of view.
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Due to the low dimensionality, quantum fluctuations
are crucial and because of this, these systems exhibit a
variety of interesting phenomena such as the appearance
of plateaux in magnetization curves, an issue that has re-
ceived a lot of attention recently (see e.g. [4–20]).

The study of spin ladder systems with different topolo-
gies of couplings has been also motivated both from the
experimental and the theoretical side. In particular, the
zig-zag coupling between quantum spin chains has re-
ceived much theoretical attention [21–25]. In the case of
antiferromagnetic (AF) couplings, the zig-zag array in-
troduces frustration which makes the study of these sys-
tems much more difficult. Apart from being a possible
approach to study the two-dimensional triangular lat-
tice, this topology of couplings is realized in a number of
quasi-one dimensional compounds, such as Cs2CuCl4 [26],
KCuCl3 and TlCuCl3 [27] as well as NH4CuCl3 [28]. A
(two-dimensional) zig-zag arrangement is also present in
SrCuO2. At room temperature, the materials KCuCl3,
TlCuCl3 and NH4CuCl3 are isostructural and can be de-
scribed by an alternating two-leg zig-zag ladder [27,28].
Experimentally, one observes a zero magnetization plateau
in the low-temperature magnetization process of KCuCl3
and TlCuCl3 [27], whereas for NH4CuCl3 plateaux in the
magnetization curve are observed at 1/4 and 3/4 of the
saturation magnetization [28]. While the former is in good
agreement with the theoretical predictions (which will be
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Fig. 1. Generic structure of the ladders considered in the
present paper.

discussed in detail in this paper), the explanation of the
latter is still unclear (even though explanations have al-
ready been proposed [29]). A detailed analysis of related
structures such as those studied in the present paper can
be expected to be also useful for interpreting these exper-
iments.

Zig-zag coupled chains also have several special prop-
erties which render them an interesting problem from a
purely theoretical point of view. Firstly, unlike many other
systems they do not have a simple ‘strong-coupling’ limit
where the system is decoupled into finite clusters of spins.
If there is such a decoupling limit, the possible values
of the magnetization are clearly quantized in this limit
and using perturbation theory one can easily understand
the appearance of magnetization plateaux in the strong-
coupling region [10,13,15]. For example, for the usual spin
ladders, one finds a quantization condition on the mag-
netization 〈M〉 (which we normalize to saturation value
1) for the appearance of a plateau in the magnetization
curve [10,13] (compare also [6,9,14,15,18]):

SV (1− 〈M〉) ∈ Z. (1.1)

Here S is the spin on each site and V is the volume of
a translationally invariant unit cell. For N -leg ladders,
V = lN where l is the period of explicit or sponta-
neous breaking of translational symmetry in the magne-
tized groundstate.

Since zig-zag coupled chains with no or weak dimeriza-
tion do not have a simple strong-coupling limit, it is not
immediately clear if the condition for the appearance of
plateaux in zig-zag ladders will also be given by (1.1). The
fact that the zig-zag coupling is frustrating is a further rea-
son why the quantization condition on the magnetization
or e.g. the universality classes of the transitions at the
plateau boundaries might be different. From a field the-
oretical point of view, zig-zag coupling is also interesting
because at zero field it cancels the most relevant coupling
term for the usual ladders and instead one has to deal
with a chirally asymmetric perturbation [24].

After mentioning all these possibilities for a different
behaviour we should, however, immediately point out that
one of our main conclusions is going to be that zig-zag
coupling is not very different from the ordinary one. In
particular, the most relevant interaction term is recovered
in many situations like the presence of a magnetic field,
dimerization or charge carriers. We will also find that all

observed magnetization plateaux have a natural interpre-
tation in terms of the quantization condition (1.1).

Motivation for studying these systems arises also from
other fields. For example, spin ladders arise in the study
of gated Josephson junction arrays [30]. Even more, refer-
ence [22] pointed out a close analogy between the two-leg
zig-zag ladder and the doped Kondo lattice model. This
model in turn is believed to be relevant to the phenomenon
of colossal magnetoresistance in metallic oxides and has
therefore received renewed attention recently [31].

The main focus of the present paper are N coupled
Heisenberg chains with a dimerized zig-zag coupling (see
also Fig. 1)

H(N) = J
N∑
i=1

L∑
x=1

Si,x · Si,x+1

+ J ′
N∑
i=1

L∑
x=1

Si,x
(
(1 + δ) Si+1,x + (1− δ) Si+1,x+1

)
− h

∑
i,x

Szi,x. (1.2)

For compactness of presentation we have written scalar
products here, but we will also consider the case where
an XXZ anisotropy ∆ is introduced in the obvious way.
We will furthermore discuss a similar system including
dimerization along the chains and also charge degrees of
freedom, i.e. Hubbard zig-zag ladders. In equation (1.2)
there is also some ambiguity in writing the interchain cou-
pling, in particular in combination with specifying bound-
ary conditions for N > 2 – an issue to which we shall
return later.

The two-leg zig-zag ladder can be reinterpreted as
a Heisenberg chain with next-nearest-neighbour interac-
tions. In this interpretation, the study of this system has
a long history going back at least to [32]. One intriguing
observation regarding this system is that for special pa-
rameters the groundstate takes a very simple form and
correlation functions can be computed exactly [33,34].

This paper is organized as follows: In Section 2 we ex-
amine the Hamiltonian (1.2) at δ = h = 0 without and
with XXZ anisotropy, using non-Abelian and Abelian
bosonization, respectively. Section 3 is devoted to a field-
theoretical analysis of the effect of various modifications:
An external magnetic field, dimerization or doping with
charge carriers. In Section 4 we then numerically investi-
gate the magnetization process of the two-leg ladder (1.2)
and discuss the various commensurate and incommensu-
rate phases appearing for J ′ > 0 as well as J ′ < 0. In
Section 5 we investigate the transition to saturation of the
two-leg zig-zag ladder in some detail. Finally, in Section 6
we numerically compute magnetization curves for several
variants of the three-leg zig-zag ladder. An appendix con-
tains some supplementary material.
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2 Field theory for zero magnetic field

2.1 The SU(2) symmetric case

First, we reexamine the simplest case of the SU(2) sym-
metric two-leg zig-zag ladder that has been studied previ-
ously in [22,23].

We start by reviewing some of the earlier results. In
the weak (interchain) coupling limit each of the chains can
be described by the level 1 Wess-Zumino-Witten (WZW)
model [35,36] with the action given by

W [gi] =
1

8π

∫
R

2
d2xtr(∂µgi∂µgi

−1
) + Γ [gi], (2.1)

where the superscript i labels the different chains, gi takes
values in the Lie group SU(2) and Γ [g] is the Wess-Zumino
term

Γ [g] =
1

12π

∫
Y

d3yεαβγtr(g−1∂αgg
−1∂βgg

−1∂γg), (2.2)

with Y a three-dimensional manifold havingR2 as bound-
ary.

The bosonized expression for the spin operator is given
by

Si(x) = JiR + JiL +B(−1)xtr(σgi) (2.3)

where

J i,aR = − 1
2π

tr
(
(∂+g

i)(gi)−1σa
)
,

J i,aL =
1

2π
tr
(
(gi)−1∂−g

iσa
)

are the WZW currents satisfying a ŝu(2)1 Kac-Moody al-
gebra and B is a non-universal constant.

The marginally irrelevant perturbation term

−λ
∑
i

∫
dxJiR · JiL, λ > 0, (2.4)

which is responsible for the logarithmic corrections in the
correlators in the case of a single spin chain is usually dis-
carded when there are more relevant terms (such as those
arising in the normal ladders from the interchain cou-
pling). In the present case, though, it should be kept since
the zig-zag interchain coupling gives rise only to marginal
perturbations.

More precisely, the zig-zag coupling

Hint = J ′
∑
x

S1
x · (S2

x + S2
x+1), (2.5)

leads to the (marginal) current-current interaction

Hint = α

∫
dx(J1

R + J1
L) · (J2

R + J2
L), (2.6)

where α is small and proportional to the interchain cou-
pling J ′. It is positive for antiferromagnetic coupling and

negative for a ferromagnetic coupling. Discarding non-
Lorentz invariant terms, which do not contribute to the
one-loop renormalization group (RG) equations, one can
rewrite the Hamiltonian in the following way

H = H1
0 +H2

0 − β
2∑
i=1

∫
dx(JiR · JiL) + α

∫
dxJTR · JTL

(2.7)

where β = λ+ α and JT = J1 + J2 which satisfies a level
2 Kac-Moody algebra. Equation (2.7) is the Hamiltonian
considered in [22,23]. By a one-loop RG analysis one finds
an exponentially small gap for antiferromagnetic zig-zag
coupling and a massless regime for a ferromagnetic cou-
pling. However, in [24] it was shown that there is another
(marginal) term

γ

∫
dx
(
tr(σg1) · ∂xtr(σg2)− tr(σg2) · ∂xtr(σg1)

)
,

(2.8)

with γ ∝ J ′, that could change the behaviour of the sys-
tem in the ferromagnetic regime.

Now we proceed to discuss how the RG equations
of [23] are changed when the chirally asymmetric pertur-
bation term (2.8) is included in the non-Abelian bosoniza-
tion framework. Such a computation was actually already
performed in [24] using a fermionic representation. Still,
our result will be complementary to [24] and is specially
appropriate to analyze the SU(2) symmetric case and gen-
eralize it to N > 2 since this symmetry is explicit in the
present analysis.

It is easy to see that another SU(2) invariant operator
given by

γ′
∫

dx
(
tr(g1)∂xtr(g2)− tr(g2)∂xtr(g1)

)
, (2.9)

has to be included as a counterterm in the action. Using
the operator product expansion of these operators and a
rescaling of the coupling constants, one obtains the RG
equations:

dα
d ln `

= α2 + γ2,

dβ
d ln `

= −β2 + 2αβ + γ2,

dγ
d ln `

= 2γα+ 2γβ + 2γ′α,

dγ′

d ln `
= 6γα− 6γ′β + 6γ′α. (2.10)

The RG equations obtained in [23] can be recovered from
here by just putting γ = γ′ = 0. It can be shown that
for an AF coupling the presence of these γ and γ′ terms
does not affect the qualitative behaviour of the flow. The
system is driven to a strong coupling regime, correspond-
ing to the massive behaviour mentioned in [23]. The way
terms like (2.8) affect the nature of the massive excitations
in this strong coupling regime is nevertheless not so clear.
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These equations can be generalized to an arbitrary
number of coupled chains, provided all the chains are cou-
pled in the same way. This applies in particular to N = 3
with periodic boundary conditions (PBC). One can then
conclude that three chains with a periodic arrangement
of antiferromagnetic coupling J ′ > 0 are massive at least
in the weak-coupling region J ′ � J . Due to the dimen-
sions of the perturbing operators involved, this kind of
coupling can be considered as weaker than the normal
coupling, in the sense that the growth of the associated
coupling is governed by a smaller exponent in the present
case. This shows the importance of a careful treatment
of the marginal interactions. This should help to clarify
the problem of the presence of a gap in the weak-coupling
region for the usual N = 3 ladder with PBC.

The situation for a ferromagnetic coupling is more sub-
tle. One can see that the trivial massless infrared fixed
point α = β = 0 is stable only if γ = γ′ = 0. Then
the presence of the twist term affects the large scale be-
haviour of the system, preventing it to reach the trivial
massless point. So, the one-loop RG flows for weak J ′ < 0
and J ′ > 0 become similar. This has already been noticed
in [24] where it was argued that the dimerized phase seems
to extend into the ferromagnetic region. One should how-
ever keep in mind that this is just a one-loop calculation
and non-perturbative effects could change the large scale
behaviour of the system.

We conclude the present section stressing that all
these results are easily generalizable to the weak-coupling
regime of an arbitrary number N of coupled chains, pro-
vided that in the continuum limit all chains are coupled
in an equal manner. It should be noted, however, that on
the lattice, inequivalent versions of completely symmetric
zig-zag interchain coupling exist for N > 2. After taking
the continuum limit, these differences manifest themselves
in different signs for interaction terms of the type (2.8),
i.e. most of the originally completely symmetric bound-
ary conditions are not symmetric anymore after taking the
continuum limit. Note also that the cases of PBC where
not all pair-couplings are present (which is the case for
N > 3) or open boundary conditions (OBC) for N > 2
are much more subtle and it is not clear if the above results
apply also to them.

2.2 The XXZ case

Let us consider now the addition of an XXZ anisotropy.
In this case, the SU(2) symmetry of the system is bro-
ken and it is then more appropriate to adopt the Abelian
bosonization approach. Below we follow the notations
of [36,22] in order to simplify making the connection with
the non-Abelian description in terms of WZW fields of
the previous section (this implies some minor changes of
conventions such as a rescaling of the fields with respect
to our study of the ordinary spin ladders [13]).

In the Abelian bosonization language, each chain is
described by a compactified free bosonic field φi with its

dynamics governed by1

H =
1
2

∫
dx
(
vK(∂xφ̃)2 +

v

K
(∂xφ)2

)
. (2.11)

The field φi and its dual φ̃i are given by the sum and differ-
ence of the lightcone components, respectively. The con-
stant K governs the conformal dimensions of the bosonic
vertex operators and can be obtained exactly from the
Bethe ansatz solution of the XXZ chain (see e.g. [13] for
a detailed summary). We have K = 1 for the SU(2) sym-
metric case (∆ = 1) and it is related to the radius R of [13]
by K−1 = 2πR2.

In terms of these fields, the spin operators read

Szi,x =
1√
2π
∂xφ

i + a : cos(2kiFx+
√

2πφi) : +
〈M i〉

2
,

(2.12)

S±i,x = (−1)x : e±i
√

2πφ̃i
(
b cos(2kiFx+

√
2πφi) + c

)
:,

(2.13)

where the colons denote normal ordering with respect to
the groundstate with magnetization 〈M i〉. The Fermi mo-
mentum kiF is related to the magnetization of the ith chain
as kiF = (1− 〈M i〉)π/2. The effect of an XXZ anisotropy
and/or the external magnetic field (to be discussed later)
is then to modify the scaling dimensions of the physical
fields through K and the commensurability properties of
the spin operators, as can be seen from (2.12), (2.13). The
non-universal constants a, b and c can be in general com-
puted numerically (see e.g. [37], for the case of zero mag-
netic field) and in particular the constant b has been ob-
tained exactly in [38].

At zero magnetization, (i.e. kiF = π/2), the first and
second terms in each of these equations correspond to the
components of the non-oscillatory (JiR + JiL) and oscilla-
tory (tr(σgi)) terms in (2.3).

Let us consider now a two-leg zig-zag XXZ ladder.
The perturbation terms in the case of zero magnetization
can be separated into three classes:

(i) Terms quadratic in the derivatives

α∂xφ
1(x)∂xφ2(x), (2.14)

that can be absorbed into a renormalization of
the compactification radii, once we diagonalize the
derivative part going to the new variables φ± =
(φ1±φ2)/

√
2. The K parameters are then renormal-

ized as

K± = K
(

1∓ 2J ′K/(Jπ) +O
(
(J ′/J)2

))
. (2.15)

(ii) The other contributions from current-current intra-
chain and interchain interactions can be rewritten as

− λ cos(
√

4πφ+) cos(
√

4πφ−)

+ α cos(
√

4πφ̃−)
(

cos(
√

4πφ+) + cos(
√

4πφ−)
)
.

(2.16)
1 Note that a factor (4R)−2 is missing in front of the Π2

term in equations (2.2) and (3.4) of [13].
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The dimensions of these operators are given by

K+ +K− and
1
K−

+K+, (2.17)

respectively (the third operator in (2.16) is always ir-
relevant). The λ term (which is the standard current-
current term for the individual chains) is irrelevant
for ∆ < 1, while the α term is irrelevant for a ferro-
magnetic interchain coupling, except for K = 1 (and
J ′ = 0) which corresponds to the SU(2) symmetric
point where it is marginal. For an AF coupling, the
α term is relevant for ∆ ≥ 1.

(iii) We also have chirally asymmetric terms [24] (those
corresponding to (2.8)) which now read

− ∂xφ+(x) sin(
√

4πφ−); +∂xφ−(x) sin(
√

4πφ+);

− ∂xφ̃+(x) sin(
√

4πφ̃−). (2.18)

Their dimensions are

1 +K−, 1 +K+, and 1 +
1
K−
· (2.19)

If we consider a small XXZ anisotropy with ∆� 1,
both K± increase and the term

∂xφ̃
+(x) sin(

√
4πφ̃−)

will now become the most relevant for sufficiently
small J ′.

Following arguments similar to the ones of [24] it fol-
lows that at most the symmetric (φ+) sector is massless.
For ∆ > 1, also this field acquires a mass, but stays mass-
less for ∆ � 1. The above analysis cannot directly be
applied to the region ∆ ≈ 1, because higher loops should
be included. Moreover, at the point ∆ = 1, the SU(2)
symmetry is not directly explicit in this treatment. How-
ever, according to the one-loop RG analysis in [24] and
Section 2.1 of the present paper, a gap seems to open at
∆ = 1 for small |J ′| 6= 0, regardless of its sign.

3 Stability of the zig-zag coupling
and magnetization plateaux

In the present section we will study different mechanisms
due to which the zig-zag interchain coupling becomes un-
stable against the perpendicular interchain coupling.

The outcome is that only under very special circum-
stances the zig-zag coupling is stable, while under the ac-
tion of an external magnetic field, the addition of rung
dimerization or the presence of charge carriers, an effec-
tive perpendicular coupling is generated.

3.1 XXZ in a magnetic field

When we add an external magnetic field to the XXZ zig-
zag ladder, the situation is more subtle, since the stag-
gered terms do not necessarily cancel. Indeed, we show in

this section that new non-oscillating commensurate terms
arise.

The current-current terms become

sin kF cos(
√

4πφ̃−)
(

sin kF cos(
√

4πφ+ + 4kFx)

+ sin(kF −
√

4πφ−)
)
, (3.1)

and the other terms become

− ∂xφ+(x) sin(2kF −
√

4πφ−)

− 1√
2

(
∂xφ

2(x) sin(4kFx+ 2kF +
√

4πφ+) − ∂xφ1(x)

× sin(4kFx− 2kF +
√

4πφ+)
)
− ∂xφ̃+(x) sin(

√
4πφ̃−).

(3.2)

The main difference with the case at 〈M〉 = 0 is that now
we have a very relevant term which is proportional to

cos2 kF cos(4kFx+
√

4πφ+) + cos kF cos(kF −
√

4πφ−)
(3.3)

with dimensions K+ and K−. Note that the first term
in (3.3) will disappear since it is incommensurate for
〈M〉 6= 0. Hence this term gives a mass to the φ− field,
leaving only the symmetric field massless.

We can then make the following statement about the
phase diagram of two zig-zag coupled XXZ spin chains
with ∆ < 1: For non-zero magnetization, and in all cases,
one of the degrees of freedom is massive and the other
massless, leaving a c = 1 theory.

With some modifications to the argumentation of [13],
this can be easily generalized to N weakly coupled zig-zag
chains, provided all the chains are coupled together: The
generalization of the most relevant interaction term (3.3)
to the case of N -leg ladders is:∑
i,j

{
λ1 cos2 kF : cos

(
4xkF +

√
2π(φi + φj)

)
:

+ λ2 cos kF : cos
(
kF −

√
2π(φi − φj)

)
:
}
. (3.4)

As for the case N = 2, the coupling constants λi essen-
tially correspond to the coupling J ′ between the chains:
λi ∼ J ′/J , but have a non-trivial dependence on 〈M〉:
λi → 0 for 〈M〉 → 0. The Gaussian part of the Hamilto-
nian is now given by:

H̄(N) =
∫

dx

[
v

2

N∑
i=1

{
K
(
∂xφ̃

i(x)
)2

+
1
K

(
∂xφ

i(x)
)2}

+
λ

π

∑
i,j

(
∂xφi(x)

)(
∂xφj(x)

)]
, (3.5)

where λ ∼ J ′/J . As for the case of the normal coupled lad-
der, the last term produces a shift of the compactification
radii of the fields and plays a crucial rôle in the opening of
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non-trivial plateaux. In arriving to the Hamiltonian (3.5)
we have discarded a constant term and absorbed a term
linear in the derivatives of the free bosons into a redefini-
tion of the applied magnetic field. One has also to include
the generalization to N chains of the current-current term
and the twist term. While obtaining the expression for the
first one is an easy task, writing down the twist term for
generic N has some subtleties. Keeping only commensu-
rate terms, a näıve generalization of (2.18) would be:

∑
i>j

−∂x(φi + φj) sin
(
2kF −

√
2π(φi − φj)

)
− ∂x(φ̃i + φ̃j) sin

(√
2π(φ̃i − φ̃j)

)
. (3.6)

If we take into account only the most relevant per-
turbation term (3.4), the analysis is similar to the
one of the normal ladder given in [13]. In particular,
one can radiatively generate “N -Umklapp” terms like
cos
(

2x
∑N
i=1 k

i
F +
√

4πNψD

)
, where ψD = 1√

N

∑N
i=1 φi,

which can give rise to the appearance of a plateau if (1.1)
is satisfied with V = N , S = 1/2.

The zero-loop analysis for the opening of such plateaux
is basically the same as in [13]. Just the coefficient of the
interaction arising from the smooth part acquires an extra
factor of two. Via the Gaussian part of the Hamiltonian
this replaces J ′ by 2J ′ in the dimension formula for the
N -Umklapp term. In this way, we obtain for example, at
∆ = 1, J ′c ≈ 0.045J for the 〈M〉 = 1/3 plateau at N = 3
and J ′c ≈ 0.35J for 〈M〉 = 1/2 at N = 4 and also for
〈M〉 = 1/5 at N = 5. At this level one could expect the
magnetization curves of zig-zag ladders to be very similar
to the ones of normal ladders. There are however some
subtleties which are not captured by this analysis. There
are inequivalent ways of coupling a number N ≥ 3 chains
in a periodic zig-zag way. These inequivalent ways of PBC
couplings correspond in the weak coupling field theoreti-
cal model to changing the relative signs, or what is equiva-
lent, permuting chain indices in the expression of the twist
term (3.6). Since the zero-loop treatment presented above
does not take into account the twist term, it is obvious that
we have to consider loop corrections to take into account
this effect. A detailed RG treatment of this model taking
into account the current-current and twist term is a diffi-
cult task beyond the scope of this paper. However, exact
diagonalization of finite chains for a strong enough J ′/J
ratio will show that these inequivalent couplings can give
rise to different behaviour in the presence of a magnetic
field. Another problem is the extension of these results
to OBC where we encounter the same limitations as for
the normal ladders. We refer the reader to [13] for a de-
tailed discussion of this point. We just mention here that
the results above cannot be directly extrapolated to con-
figurations with OBC. In this case one should therefore
complement the present field theoretical analysis by other
methods such as exact diagonalization.

Fig. 2. Dimerization along the legs.

3.2 Dimerization in XXZ ladders

Another way to generate an effective perpendicular cou-
pling is to include dimerization in the zig-zag coupling.
Let us consider the Hamiltonian in (1.2) with non-zero
rung dimerization δ. In the bosonized language, this gives
rise to the perturbation term

Hdim = J ′
∑
i

∑
x

(
(−1)xni ·

(
(1 + δ)(−1)xni+1

+ (1− δ)(−1)x+1ni+1

))
= 2J ′δ

∑
i

∑
x

ni · ni+1,

(3.7)

where ni is the staggered component of the spin oper-
ator at zero magnetization (nzi = cos(

√
2πφi), n±i =

exp(±i
√

2πφ̃i)).
This perturbation term can be rewritten as

Hdim = λ
∑
i

∑
x

[
− cos

(√
4π(φi + φi+1)

)
+ cos

(√
4π(φi − φi+1)

)
+ 2 cos

(√
4π(φ̃i − φ̃i+1)

)]
, (3.8)

where λ ∝ J ′δ.
The effective model is then very similar to the one for

a ladder with a normal perpendicular coupling. In partic-
ular, using the formulae of [13], one can study the opening
of plateaux in the magnetization curve as a function of δ
and J ′. The N = 2 version of the dimerized zig-zag ladder
has been analyzed in detail in [12] and the magnetization
plateau with 〈M〉 = 1/2 predicted there was also observed
numerically [39,40].

Another way to add dimerization is along the legs of
the chains as in Figure 2, which gives rise to additional
terms. They read in the presence of a magnetic field

δ
N∑
i=1

∑
x

(−1)x cos
(
2kFx+

√
2πφi

)
, (3.9)

which is incommensurate at non-zero magnetization, but
can contribute to radiatively generated commensurate
terms as we discuss below (see also [20]).

Taking as an example N = 2, one can show that the
operator

λ′
∑
x

(−1)x cos
(
4kFx+

√
4πφ+

)
(3.10)
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is radiatively generated for non-zero magnetization, and
it is commensurate for 〈M〉 = 1/2. This operator arises
from a combined effect of the interchain coupling and the
dimerization along the chains and hence λ′ in (3.10) is
proportional to J ′, δ and 〈M〉. This operator has dimen-
sion K and is hence relevant, implying the existence of a
plateau at 1/2 of the saturation magnetization.

A related analysis was performed in [9] but in the
regime where the interchain coupling J ′ → −∞, which
cannot be studied within the perturbative approach used
here. In fact, in that case the existence of the plateau was
associated with a different operator of higher dimension,
which could become relevant only under certain condi-
tions.

In the present case, the existence of the plateau is in-
dependent of the values of the microscopic parameters,
since the dimension of the operator (3.10) is always smaller
than 2. Furthermore, for a two-leg zig-zag ladder there is
only one way to introduce dimerization along the legs and
therefore in contrast to the ordinary ladders [20] cancella-
tions do not occur.

An amusing observation which may also be of some
relevance for experiments is that one recovers the two-
leg zig-zag ladder with dimerized interchain coupling as
the first-order effective Hamiltonian for the two-leg lad-
der with dimerization along the chains (see Fig. 2) in the
limit of δ → 1. Details are given in an appendix. The main
point is that dimerized interchain coupling and dimeriza-
tion along the legs break translational symmetry in differ-
ent ways: For the former case a translationally invariant
unit cell of the Hamiltonian contains two spins while in
the latter case it contains four. In view of the quantiza-
tion condition (1.1), this suggests that dimerization along
the legs can give rise to more plateaux than if only the
interchain coupling is dimerized.

A similar analysis as the one of this section can be
performed for generic N .

3.3 Doping with charge carriers

Let us consider now a generalization of the system studied
in Section 2 by adding charge degrees of freedom. We start
by describing the Hamiltonian of interacting electrons in
one dimension [36,41]:

H = −D
2

∑
x,α

(c†x+1,αcx,α + H.c.) + U
∑
x

c†x,+cx,+c
†
x,−cx,−

(3.11)

where c† and c are electron creation and annihilation op-
erators and α = ±. For positive U and at half filling, the
charge sector is massive and the spin sector for large U can
be described by the Heisenberg Hamiltonian [36]. Here,
we will analyze the large scale behaviour of two identical
systems coupled in zig-zag, away from half filling. Since
we are now keeping the SU(2) symmetry of the spin sec-
tor (neither magnetic field nor XXZ anisotropy will be
considered), the continuum limit of the Hamiltonian at

non-zero doping can be written as:

H =
1
2

∫
dx
(
vcKc(∂xφ̃c)2 +

vc

Kc
(∂xφc)2

)
+HWZW(gs)− λ

∫
dxJR · JL, (3.12)

where the first term of the Hamiltonian stands for the
charge sector and the WZW term describes the spin sec-
tor. The charge and spin density operators are given re-
spectively by:

ρ(x) = jR + jL + const. sin(2kFx+
√

2πφc) tr(g)

+ const. cos(4kFx+
√

8πφc) (3.13)

and

S(x) = JR + JL + const. sin(2kFx+
√

2πφc) tr(σg),
(3.14)

where j and J are the U(1) and SU(2) currents of the
charge and spin sector respectively. The Fermi momentum
kF is now related to the charge sector and we keep our spin
sector at zero magnetization. It is known that Kc = 1 for
U = 0 and Kc = 1/2 for U =∞ [42].

We again consider two copies of the system and study
perturbatively the zig-zag coupling between them. More
precisely, we consider a coupling term which involves both
charge and spin densities

Hint =
∑
x

(
U ′

2
ρ1
x(ρ2

x + ρ2
x+1) + J ′S1

x(S2
x + S2

x+1)
)
.

The presence of a further direct hopping term between
the chains would require a more detailed analysis. Indeed,
first the Gaussian part must be diagonalized including this
direct hopping term and then, for example, one can treat
perturbatively terms like Hint. This is beyond the scope of
the present article where we just concentrate on showing
that the presence of a weak coupling between Hubbard
chains like in [41] generalized to the zig-zag configuration
can give rise to results similar to those observed for normal
ladders.

In the continuum description, this interaction term
can be written in two different pieces. We first have the
current-current interaction term given by

U ′

2
(j1

R + j1
L)(j2

R + j2
L) + J ′(J1

R + J1
L) · (J2

R + J2
L). (3.15)

The U(1) current-current term can be completely ab-
sorbed in the Gaussian charge Hamiltonian by a rescaling
of vc and Kc

K±c =
(

1± U ′

2πvc

)−1/2

Kc (3.16)

where the indices ± stand for the symmetric and antisym-
metric fields (φ1

c +φ2
c)/
√

2 and (φ1
c −φ2

c)/
√

2 respectively.
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The SU(2) current term is identical to the one of Sec-
tion 2.1 and we know then that it plays a rôle only for
positive J ′.

There is however another commensurate perturbation
present away from half filling which is given by

cos kF cos(
√

4πφ−c )
(
U ′ const. tr(g1) tr(g2)

+ J ′ const. tr(σg1) · tr(σg2)
)
. (3.17)

In the present case, the chirally asymmetric terms are ir-
relevant in the RG sense.

In the weak interchain coupling limit we are consider-
ing, U ′ is much smaller than U . Then U ′/(2πv−c ) < 1−K2

c

and this term is relevant giving a mass to all the spin de-
grees of freedom as well as to the antisymmetric charge
field φ−c . Thus, only the field φ+

c remains massless.
We see from (3.17) that also in this case an effective

perpendicular coupling is generated, signaling the instabil-
ity of the zig-zag interchain coupling also against charge
doping.

Since the perturbation terms in (3.17) are the same as
those that appear in the normal coupling studied in [41],
it is then natural to expect that the IR behaviour of the
charge density wave and superconducting correlation func-
tions will be the same in the present case.

4 Numerical analysis of the two-leg case

In this section we consider the N = 2 version of (1.2)
without dimerization, i.e. δ = 0. It is then useful to think
of the two-leg zig-zag ladder as a single chain with next-
nearest neighbour interaction. So, for N = 2 the Hamilto-
nian (1.2) can be recast in the form (writing explicitly an
XXZ anisotropy ∆)

H = J ′
L∑
x=1

{
∆SzxS

z
x+1 +

1
2
(
S+
x S
−
x+1 + S−x S

+
x+1

)}

+ J
L∑
x=1

{
∆SzxS

z
x+2 +

1
2
(
S+
x S
−
x+2 + S−x S

+
x+2

)}

− h
L∑
x=1

Szx. (4.1)

Here L denotes the total volume of the system. In this
section we will always assume J > 0. To avoid frustration
also in the limit J ′ → 0 where we find two weakly coupled
chains, we choose L to be a multiple of 4.

In the formulation (4.1) essentially all spatial symme-
tries are manifestly implemented by a one-site translation
x→ x+ 1. So, one can use Fourier transforms to simplify
the determination of the spectrum. Since the magnetic
field h is coupled to a conserved order parameter in (4.1),
we can relate all quantities at a field h to those at h = 0
– the results to be reported below are all obtained from
computations with h = 0.

There is already a number of exact diagonalization
studies for the two-leg XXZ zig-zag ladder (or equiva-
lently the Heisenberg chain with next-nearest-neighbour

interactions) in a magnetic field [43–49,39]. However,
there are still some regions in the parameter space and
aspects which have not been studied in great detail, such
that further numerical investigations seem worthwhile. For
a numerical analysis we concentrate on the isotropic point
∆ = 1. It turns out that groundstate momenta can be in-
commensurate in the presence of the magnetic field. Such
a feature is interesting in its own right and reminds us
of recent observations made for the S = 1 chain with
biquadratic interaction [50,51], but also gives rise to tech-
nical complications. This incommensurability is one rea-
son why the computations to be reported below needed
substantially more CPU time than analogous computa-
tions for conventional ladders [10], even though we used
an improved version of the program employed loc.cit.

In order to scan the whole range of coupling constants
we choose a normalization such that J + |J ′| = 1. J ′ = 0
then corresponds to two decoupled chains, J ′ = 1 to a
single antiferromagnetic chain and J ′ = −1 to a single
ferromagnetic chain. The resulting magnetic phase dia-
gram is shown in Figure 3. Here, the lines show the mag-
netic fields where the magnetization jumps between two
different values that are realized at a given system size.
The conclusions are schematically summarized in the in-
set of Figure 3. Regions with a ferromagnetically polarized
groundstate are denoted by an “F”. The other regions will
be explained in the following discussion of our results.

Let us look first at the antiferromagnetic region J ′ > 0.
Here spins flip one after the other. The groundstate mo-
menta are in general incommensurate (i.e. not multiples
of π/2) in the region IC1 (0 < J ′ < 4J), though for the
small lattice sizes accessible to us, this does not show up
in the region of small J ′. For h = 0, a study of the static
structure factor exhibited a transition to incommensurate
behaviour at J ′/J ≈ 1.92075 [52].

For h > 0, the onset of incommensurability in the
groundstate momenta was determined in [47], and [53] de-
termined a transition in the groundstate using a different
criterion. In the incommensurate region IC1 of Figure 3,
the lines are irregular which is mainly due to the lattice
discretization of the momenta. In the region C1, i.e. for
J ′ > 4J , all groundstate momenta are commensurate and
convergence with system size is good.

A gap [21,22] can be anticipated in Figure 3 for J ≤
J ′ ≤ 2J , but apart from that there is no evidence for any
non-trivial plateaux. In fact, non-trivial plateaux have not
been observed at the various points which have been stud-
ied over the past decade [39,43,44,46,49]. These observa-
tions can be nicely interpreted in terms of the quantiza-
tion condition (1.1). In view of the mapping to a single
chain (4.1), one should substitute N = 1 in (1.1). The
gap then arises by spontaneous breaking of this enhanced
translational symmetry to l = 2. Non-trivial plateaux
would then require l > 2, which at least in the two-leg
zig-zag ladder does not seem to be permitted.

The magnetization process on the ferromagnetic side
has already been looked at some time ago [45], though
no definite conclusion was reached due to problems of
resolution. Indeed, the ferromagnetic side is quite a bit
different from the antiferromagnetic one, even though
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Fig. 3. Magnetic phase diagram with the choice of normalization J + |J ′| = 1. The lines are for L = 24 (full), L = 20 (dashed).
L = 16 (dotted), L = 12 (long dashed-dotted) and L = 8 (dashed-dotted). The inset shows a schematic version which is
discussed in the text.

plateaux do neither seem to occur here. In the region C2
(−3J/2 ≤ J ′ < 0), spins flip in pairs and the groundstate
momenta of those states that participate in the magneti-
zation process are commensurate (actually 0 or ±π). The
states with an odd number of spins pointing up (or down)
can have incommensurate momenta, but they do not par-
ticipate in the magnetization process.

At J ′ = −4J a transition to a completely polarized
ferromagnet takes place. The precise location of the tran-
sition point can be attributed to the fact that at J ′ = −4J
an exact S = 0 groundstate, the uniformly distributed
RVB state [54] can be written down and is degenerate with
the ferromagnetic state. The intermediate region IC2 (i.e.
roughly −4J < J ′ < −3J/2) is rather complicated: Here
the number of spins flipping simultaneously at a given sys-
tem size changes with J ′/J . Furthermore, groundstates
with incommensurate momenta (i.e. momenta not an in-
teger multiple of π) do participate in the finite-size mag-
netization process.

The magnetization process in the region IC2 is illus-
trated in Figure 4 by the finite-size magnetization curves
at J ′ = −3J . Here, the number of spins that flip simul-
taneously in a finite-size system varies between 1 and 3
(the number of spins flipping simultaneously increases as
one approaches J ′ = −4J). Strong non-monotonic finite-
size effects can be observed in particular at the smaller
system sizes. Nevertheless, a reasonable approximation to
the limit L → ∞ seems to be obtained applying the pro-
cedure of [55] to L = 20 and L = 24, i.e. by connecting
the midpoints of the steps in the finite-size magnetiza-
tion curves. This yields the bold line in Figure 4. The
behaviour at small fields is somewhat speculative since
the finite-size gaps are non-monotonic such that it is not
possible to extrapolate them. We have therefore simply
assumed a vanishing gap in the limit L→∞.

The region close to saturation in Figure 4 is on compa-
rably safe grounds. In fact, we have data for up to L = 48
which has been taken into account for the bold curve. In
the case J ′ = −3J , this data yields no evidence for more
than three spins flipping simultaneously at the transition
〈M〉 → 1. Therefore we are confident that the magneti-
zation curve becomes smooth in the thermodynamic limit
(though very steep at the transition 〈M〉 → 1). In par-
ticular, we think that our intermediate phase IC2 is dif-
ferent from the metamagnetic one observed in [48] in a
different parameter region, even though at first sight they
bear some resemblance. The fact that we are not aware of
any evidence for incommensurate momenta arising in the
metamagnetic phase [48] also suggests that there are two
distinct phases preceding a transition to a ferromagnet in
different parameter regions.

We would like to conclude the present discussion with
a few remarks on the spin-gap. Although it has already
been investigated with high accuracy for J ′ > 0 apply-
ing the density matrix renormalization group to large sys-
tem sizes [21,22,25], there are still some interesting prob-
lems. Firstly, only two of these investigations [21,22] deal
with the incommensurate region and there the results dif-
fer by more than 10%. Secondly, no such investigations
were performed for J ′ < 0. In these two regions, S = 1
excitations (corresponding to the lowest lines in Fig. 3 for
J ′ > 0) have an incommensurate momentum at the min-
imum of their dispersion. Since the system size limits the
resolution in momentum-space, one has additional non-
monotonic finite-size effects. We have tried to overcome
this with an interpolation using a Fourier transform of the
dispersion. However, even/odd momentum effects (which
are characteristic for scattering states) obscure the true
incommensurate minimum and preclude such an analysis.
According to preliminary investigations, such an approach
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dashed-dotted) and L = 8 (dashed-dotted). The bold line is a sketch of the form expected in the thermodynamic limit.

is applicable to S = 1/2 excitations (the fundamental
spinon-type excitations) not only in the commensurate re-
gion [25] but also in the incommensurate region.

The question of a spin-gap is particularly interesting
for J ′ < 0. In Section 2.1 we have confirmed the conclu-
sion of [24] that a one-loop RG analysis suggests a non-
zero spin-gap for small J ′ < 0. However, for J ′ < 0 there
is no region where a gap in the magnetic excitations is
obvious from our numerical data. The data for the Sz = 2
excitations (corresponding to the lowest lines for J ′ < 0
in Figure 3) actually fits well to the form

E(L) ∼ 1
L
· (4.2)

Such a form is characteristic for a conformally invariant
and thus gapless situation (see e.g. [56]). For this reason
we have not drawn a gap in the schematic inset of Fig-
ure 3 for J ′ < 0. Nevertheless, it remains a challenge to
find numerical evidence for a spin-gap in some magnetic
excitations and look for possible massless sectors which
should be organized into ŝu(2)1 representations.

5 The transition to saturation in the two-leg
ladder

5.1 The antiferromagnetic side

Now let us look at the transition to saturation in the
lattice-version of the N = 2-leg zig-zag ladder.

First we recall the computation of the transition field
huc [48]. One can immediately write down the energy of a
fully polarized (ferromagnetic) state (with h = 0)

Esat =
L

4
∆ (J ′ + J) . (5.1)

Using a Fourier transform, also the excitation energy of a
single spin-wave above this fully polarized state is readily
computed as

E1s(p) = −∆ (J ′ + J) + J ′ cos p+ J cos(2p). (5.2)

To determine the critical magnetic field huc associated to
the transition 〈M〉 → 1, we have to minimize (5.2). One
finds the minimum at

pmin =

π − cos−1

(
J ′

4J

)
for 0 ≤ J ′ ≤ 4J,

π for J ′ ≥ 4J.
(5.3)

An immediate consequence of this simple result is that the
groundstate of the Sz = L− 1 sector has an incommensu-
rate momentum for 0 < J ′ < 4J . This is presumably the
simplest example of how the two competing interactions
in (4.1) lead to the phase with incommensurate ground-
state momenta which we discussed in the previous section.

Insertion of (5.3) into (5.2) directly leads to the upper
critical field

huc =

∆J ′ + (∆+ 1)J +
J ′2

8J
for 0 ≤ J ′ ≤ 4J,

(∆+ 1)J ′ + (∆− 1)J for J ′ ≥ 4J.
(5.4)

Now we will go beyond [48] and discuss the nature of
the transition 〈M〉 → 1. To this end, it is useful to look
at two-spinwave excitations [57]. After a Fourier transfor-
mation, one arrives at a matrix problem in the distance of
the two flipped spins. We omit the explicit expressions for
the matrices that we have used to study the behaviour
of the magnetization curve close to saturation. This is
equivalent to studying the finite-size behaviour of the
two-spinwave groundstate energy E2s at h = huc, since
1− 〈M〉 = 4/L and E2s = h− huc.
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For the two-leg zig-zag ladder, the eigenvalue prob-
lem in the two-spinwave subspace can be interpreted as
a fourth-order difference equation with suitable boundary
conditions and thus can in principle be solved by a fur-
ther Fourier transformation. For our purposes it turned
out to be sufficient to fix the center-of-mass momentum
p and then perform a numerical diagonalization for sys-
tem sizes up to L ≈ 150. We have looked at ∆ = 1 and
the following values of the coupling constants: J ′ = 2J ,
J ′ = 4J , J ′ = 4.1J and J ′ = 4 cos(π/12)J . These values
were selected since for them (5.3) can be realized exactly
for suitable choices of the system size L and one can thus
avoid further non-monotonic finite-size effects which could
arise from the lattice discretization in momentum space.
In all cases that we have studied, the minimum energy of
the two-spinwave excitation was found in the sector with
center-of-mass momentum p = 0.

The numerical diagonalization determines the critical
field associated to the transition from two flipped spins to
one flipped spin. For J ′ 6= 4J , this critical field is compat-
ible with the universal DN-PT behaviour [58,59]

huc − h ∼ (1− 〈M〉)2. (5.5)

Just at J ′ = 4J we find a different behaviour which is
much better described by2

huc − h ∼ (1− 〈M〉)4. (5.6)

To understand why just the point J ′ = 4J leads
to a different exponent, it is instructive to look at the
behaviour of E1s near the minimum pmin. From (5.2)
and (5.3) we find

E1s(pmin + x)− E1s(pmin) =

(4J − J ′)(4J + J ′)
8J

x2 +O(x3) for J ′ < 4J,

J

2
x4 +O(x6) for J ′ = 4J,(
J ′

2
− 2J

)
x2 +O(x4) for J ′ > 4J.

(5.7)

We see that the dispersion is quadratic everywhere ex-
cept for the point J ′ = 4J where it is quartic. These ex-
ponents in the one-spinwave dispersion are in one-to-one
correspondence with those in (5.5) and (5.6), respectively.
So, the behaviour of the magnetization for 〈M〉 → 1 can
be explained by the band structure. Note that (5.7) is
independent of ∆, and so should be the exponents corre-
sponding to (5.5, 5.6), respectively (as long as ∆ > 0).

5.2 The ferromagnetic side

Now we turn to the transition to saturation on the ferro-
magnetic side J ′ < 0. Since we know from the numerical
investigation that spins flip in pairs (as long as |J ′| is not
too large), we have to solve a non-trivial matrix problem

2 The exponent 4 has also been observed in [46] at J ′/J = 4.

already to determine the critical field huc in the ferromag-
netic regime J ′ < 0. For |J ′| < 2.5J , the minimum of
the dispersion of the two-spinon state is now located at
p = π. In the region J ′ < −2.66J , the minimum moves
away form p = π, i.e. it becomes incommensurate. In the
following we restrict ourselves to the region of sufficiently
small |J ′| such that spins flip in pairs and only commensu-
rate groundstates participate in the magnetization process
for 〈M〉 → 1.

Some values of transition fields huc are listed in Ta-
ble 1. These have actually been obtained on chains with
a few hundred sites. Nevertheless, all given digits should
be those of the thermodynamic limit.

To check the asymptotic behaviour of the magnetiza-
tion curve, one further needs at least the transition field
h4→2 at which two spins flip to reduce the number of spins
deviating from the ferromagnetic state from four to two.
Table 1 lists transition fields h4→2 computed numerically
on chains with 36 ≤ L ≤ 72. Since 1−〈M〉 ∼ 1/L, we can
then test for the universal behaviour (5.5) by forming the
expression

L
√
huc − h4→2, (5.8)

which should converge to a constant if (5.5) is satisfied.
Indeed, the expression (5.8) appears to converge to a con-
stant with increasing L for all cases listed in Table 1. So,
we find no counterevidence against the universal DN-PT
behaviour on the ferromagnetic side either, although we
have no compelling argument in its favour.

We expect that the transition 〈M〉 → 1 remains second
order if we increase |J ′| further into the regime where more
than two spins flip at the same time (this is in contrast to
the metamagnetic transition studied in [48]). At least in
this region the very steep behaviour of the magnetization
curve (see Fig. 4) could mean a breakdown of the DN-PT
universal behaviour (5.5). However, due to the flipping of
several spins at the same time, we are not able to investi-
gate the transition to saturation in detail numerically in
this region.

6 The three-leg case

Now we proceed with a discussion of N = 3-leg zig-zag
ladders on the lattice, though in less detail than for the
two-leg ladder. For N = 3 there is a large number of
possible boundary conditions for the coupling between
the chains. In particular for periodic boundary conditions
(PBC), there are several possibilities already for N = 3, of
which none is naturally singled out in the case of zig-zag
coupling. We will discuss three types of PBC in addition
to open boundary conditions along the rungs. To eluci-
date these different types of boundary conditions it may
be useful to consider the case J ′ = J where the three-leg
zig-zag ladder can be considered as a strip of the trian-
gular lattice Heisenberg antiferromagnet. The triangular
lattice has three sublattices and it is possible to consider
boundary conditions that do or do not respect this sub-
lattice structure. We will call the PBC that respect this
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Table 1. Values of h4→2 at which a transition from four to two spins deviating from the ferromagnetic state takes place at a
given size L. The last row contains auxiliary data, i.e. values of huc which were estimated using much larger systems.

J ′/J 0 −3/13 −1/3 −5/11 −3/5 −7/9 −1 −9/7 −5/3 −11/5

L h4→2/J

36 1.96595 1.77368 1.69888 1.60799 1.50460 1.38523 1.24387 1.07095 0.85064 0.55455
40 1.97272 1.78215 1.70116 1.60981 1.50630 1.38682 1.24527 1.07208 0.85145 0.55495
44 1.97766 1.78427 1.70263 1.61109 1.50753 1.38796 1.24624 1.07287 0.85201 0.55522
48 1.98137 1.78568 1.70366 1.61204 1.50844 1.38879 1.24695 1.07343 0.85241 0.55542
52 1.98423 1.78666 1.70441 1.61277 1.50914 1.38941 1.24748 1.07385 0.85271 0.55556
56 1.98648 1.78736 1.70499 1.61335 1.50968 1.38988 1.24788 1.07418 0.85294 0.55567
60 1.98828 1.78788 1.70546 1.61381 1.51010 1.39025 1.24819 1.07443 0.85312 0.55576
64 1.98974 1.78828 1.70583 1.61418 1.51044 1.39054 1.24844 1.07463 0.85326 0.55582
68 1.99094 1.78859 1.70615 1.61448 1.51071 1.39078 1.24864 1.07479 0.85338 0.55588
72 1.99195 1.78885 1.70641 1.61473 1.51093 1.39097 1.24880 1.07492 0.85347 0.55592

huc/J 2 1.79086 1.70833 1.61648 1.51250 1.39236 1.25000 1.07589 0.85417 0.55625

sublattice structure at J ′ = J ‘PBC of type A’, while those
that identify different sublattices ‘PBC of type B and C’.

The N = 3-leg zig-zag ladder with PBC of type B
and C can be rewritten as a single Heisenberg chain with
interactions up to distances of three, respective four sites:

H = J ′
3L∑
n=1

{
∆SznS

z
n+1 +

1
2
(
S+
n S
−
n+1 + S−n S

+
n+1

)
+∆SznS

z
n+r +

1
2
(
S+
n S
−
n+r + S−n S

+
n+r

)}
+ J

3L∑
n=1

{
∆SznS

z
n+3 +

1
2
(
S+
n S
−
n+3 + S−n S

+
n+3

)}
− h

3L∑
n=1

Szn. (6.1)

Here the second interaction term goes over a distance
r = 2 for PBC of type B, while PBC of type C are char-
acterized by r = 4.

Due to (6.1), the three-leg zig-zag ladder with PBC of
type B can be considered as the natural counterpart of
the N = 2 zig-zag ladder where the Hamiltonian can be
written in the form (4.1).

In contrast to the preceding discussion of the two-leg
case we will from now on again denote the length of each
chain by L, i.e. the total number of spins is then 3L.
Accordingly, we introduce a momentum p by a one-site
translation along one of the three chains.

In the following we will study each of these four bound-
ary conditions in turn.

6.1 The saturation field

First, we compute the field huc at which the transition to
saturation takes place. This is not only useful to check the
numerical computation to be reported in the next subsec-
tion, but like in the case N = 2 also serves as a guide
where groundstates with incommensurate momenta can
participate in the magnetization process.

6.1.1 PBC of type A

A simple computation yields the excitation energy of one
flipped spin above a ferromagnetic background as

E1s,±(p) = −2∆J ′ − J ′

2

(
1 + cos(p)± sin(p)

√
3
)

−∆J + J cos(p). (6.2)

The minimum of this dispersion is located at

tan (pmin,±) = ± J ′
√

3
J ′ − 2J

, (6.3)

which is generically incommensurate. This then leads to
the transition field

huc = −E1s,±(pmin,±)

= ∆ (2J ′ + J) +
J ′

2
+
√
J ′2 − J ′J + J2. (6.4)

6.1.2 Open boundary conditions

The three-leg zig-zag ladder with open boundary condi-
tions is shown in Figure 1. Here we consider only the case
without dimerization (δ = 0).

The dispersion of the gap corresponding to a sin-
gle flipped spin above the ferromagnetic background is
given by

E1s(p) = −∆J + J cos (p)

− J ′
(

3
2
∆+

1
2

√
∆2 + 8 cos

(p
2

)2
)
· (6.5)

For ∆J < J ′ < J
√
∆2 + 8, this dispersion has an incom-

mensurate minimum at

cos
(pmin

2

)
=

1
4

√
2J ′2 − 2∆2J2

J
· (6.6)

This then leads to an upper critical field

huc = −E1s(pmin) =
(
∆

2
+ 1
)2

J +
J ′2

4J
+

3J ′∆
2
· (6.7)
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Fig. 5. Magnetization curves of an N = 3 zig-zag ladder with PBC of type A at J ′ = 3J/2. The lines are for L = 12 (full),
L = 9 (dashed). L = 6 (dotted) and L = 3 (dashed-dotted). The bold line is an extrapolation to the thermodynamic limit.

6.1.3 PBC of type B and C

Using the representation (6.1) one easily finds the dis-
persion of a single flipped spin above the ferromagnetic
background

E1s(p) = −∆(2J ′ + J) + J cos (p)

+ J ′
{

cos
(rp

3

)
+ cos

(p
3

)}
· (6.8)

Since the PBC of type B (r = 2) are simpler to discuss
analytically, we will now concentrate on this case. The
dispersion (6.8) then always has an incommensurate min-
imum at

cos
(pmin

3

)
=

√
J ′2 − 3JJ ′ + 9J2 − J ′

6J
· (6.9)

From this we find an upper critical field for PBC of type B

huc = −E1s(pmin)

= ∆ (2J ′ + J) +
J ′
(

9JJ ′ − 2J ′2 + 27J2
)

54J2

+

(
J ′2 − 3JJ ′ + 9J2

) 3
2

27J2
· (6.10)

6.2 Magnetization curves obtained by exact
diagonalization

Now we present one example of a magnetization curve for
each of the four boundary conditions introduced above.
In all cases we consider the SU(2) symmetric situation
∆ = 1 and set J ′/J = 3/2.

6.2.1 PBC of type A

An example of a magnetization curve for N = 3 with PBC
of type A is shown in Figure 5. For J = J ′, this geometry
is one of the possible approximations to a two-dimensional
triangular lattice antiferromagnet and a study of precisely
this geometry [60,61] exhibits a clear plateau with 〈M〉 =
1/3. For J = 0, one recovers an ‘ordinary’ rectangular
spin ladder with periodic boundary conditions which then
has equal coupling constants. The latter has already been
investigated in some detail [10,13,17] and evidence was
found for a small plateau with 〈M〉 = 1/3 (there is further
the possibility of a tiny spin-gap at h = 0 [62,13]).

In Figure 5 we chose J ′ = 3J/2 in order to study
a new example. One can see from (6.3) that this gives
rise to an incommensurability for 〈M〉 → 1 (also at other
values of the magnetization there is evidence that this
choice of parameters lies in an incommensurate phase).
Both at J = 0 and J ′ = 0, one should choose even L
to avoid frustration by the periodic boundary conditions
along the chains, while for J ′ = J frustration is avoided if
L is chosen to be a multiple of 3. To avoid both effects, L
should be chosen as a multiple of 6. However, this would
considerably restrict the system sizes accessible to us. We
therefore require only divisibility by three (which seems to
be the more important one if the coupling constants are
of a similar magnitude).

The upper critical field for the choice of parameters in
Figure 5 is evaluated from (6.4) as huc/J = 19/4+

√
7/2 ≈

6.072 9.
Like for N = 2 in Figure 4, we applied the extrap-

olation procedure of [55] to the largest available system
sizes in order to obtain the estimate for the magnetiza-
tion curve in the thermodynamic limit which is shown by
the bold line in Figure 3.
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Fig. 6. Magnetization curves of an N = 3 zig-zag ladder with open boundary conditions along the rungs and J ′ = 3J/2. The
lines are for L = 12 (full), L = 10 (dashed). L = 8 (dotted), L = 6 (long dashed-dotted) and L = 4 (dashed-dotted). The bold
line is an extrapolation to the thermodynamic limit.

In this extrapolated magnetization curve we have only
drawn an 〈M〉 = 1/3 plateau but no further ones. This
is motivated by the criterion (4.2): If we compare E(6) ≈
0.793J with E(4) ≈ 1.274J (the latter is not shown in
Fig. 3) we see that the decrease is faster than (4.2). These
are only two data points which probably do not lie in the
asymptotic regime (in particular non-monotonic finite-size
corrections may still be important). It should also be noted
that the weak-coupling analysis of Section 2.1 predicts a
spin-gap. However, Figure 5 corresponds to a rather large
value J ′. In any case, according to our numerical data, a
spin-gap seems to be at least very small if present at all.
We have therefore not drawn an 〈M〉 = 0 plateau (cor-
responding to a spin-gap) in Figure 5, though the spec-
ulative nature of the extrapolation in the region of small
fields should be kept in mind.

For non-zero magnetizations, we use the following gen-
eralization of (4.2) as the criterion for a vanishing plateau
width (compare also [63]):

hc2(L)− hc1(L) ∼ 1
L
· (6.11)

At 〈M〉 = 2/3 we find hc2 −hc1 ≈ 0.993J , 0.584J , 0.529J
and 0.331J for L = 4, 6, 8 and 12, respectively. Although
we cannot entirely rule out a tiny 〈M〉 = 2/3 plateau on
the basis of this data, it appears to be quite unlikely. We
have therefore neither drawn a plateau at 〈M〉 = 2/3 in
Figure 5. In any case, our main result for PBC of type A
is that one can observe a clear plateau with 〈M〉 = 1/3.

6.2.2 Open boundary conditions

The limit J → 0 of an N -leg zig-zag ladder with open
boundary conditions gives rise to the recently introduced

‘diagonal ladders’ [64]. In particular, for N = 3 with
open boundary conditions one recovers the necklace lad-
der at J = 0. This necklace ladder is very similar to the
S = (1, 1

2 ) ferrimagnetic chain which is known to exhibit
a plateau with 〈M〉 = 1/3 [65,66].

This strong-coupling limit J → 0 suggests to choose L
divisible by two, as does the weak-coupling limit J ′ → 0.
On the other hand, at J ′ = J the N = 3 zig-zag ladder
with open boundary conditions can be again considered
as a strip of a triangular lattice which would suggest that
L should be chosen a multiple of three. For the choice of
parameters J ′/J = 3/2 shown in Figure 6 divisibility by
three turns out to be not important and we impose only
divisibility by two.

The choice of parameters corresponding to Figure 6
(∆ = 1, J ′ = 3J/2) appears to lie entirely in an incom-
mensurate phase. At least at the transition 〈M〉 → 1,
the momentum given by (6.6) is clearly incommensu-
rate. The upper critical field is then found from (6.7) as
huc = 81

16J = 5.062 5J .
The finite-size magnetization curves in Figure 4 ex-

hibit the expected plateau at 〈M〉 = 1/3. In addition,
there is clear evidence for a further plateau at 〈M〉 = 2/3.
The boundaries of these two plateaux were extrapolated
applying either a Shanks transform (which is the α = 0
special case of the vanden Broeck–Schwartz algorithm –
see e.g. [67]) to their values hci(L) at the available sys-
tem sizes L, or (in the case of the upper boundary of the
〈M〉 = 1/3 plateau) by fitting to

hci(L) = hci(∞) +
a

L
· (6.12)

This heuristic formula is motivated by (6.11), since equa-
tion (6.12) can be expected to yield coincident plateau
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boundaries if there is actually no plateau. In general,
(6.12) will work well if it is applied to system sizes sub-
stantially below the correlation length and underestimate
the width of a plateau otherwise. Here, it gives a small
correction to the value for hci obtained for the largest
L, as does the Shanks extrapolation at the other plateau
boundaries.

The finite-size spin-gap for L = 4, 6 and 8 is nicely
fitted by (4.2). This indicates that there is no spin-gap
at h = 0 and we have therefore not drawn an 〈M〉 = 0
plateau in the extrapolated magnetization curve of Fig-
ure 6. Recently it was shown that a related three-leg lad-
der at zero field is also massless and gives rise to a c = 2
(ŝu(2)2× Ising) conformal field theory [68]. However there
the chirally asymmetric perturbation was eliminated by a
particular choice of coupling in order to permit an an-
alytic treatment. In the present case the central charge
might therefore be smaller than two.

The bold line in Figure 6 is an extrapolation taking
into account the foregoing discussion of plateau bound-
aries. Between the plateaux it has been obtained by the
same procedure as used in Figures 4 and 5.

6.2.3 PBC of type B and C

Inspection of the r = 2 version of (6.1) shows that at
J = 0, the N = 3-leg zig-zag ladder with PBC of type B
is equivalent to the N = 2-leg ladder with equal coupling
constants. So, the results for the two-leg case discussed
earlier can be carried over to this three-leg ladder at strong
coupling. For example, this N = 3-leg ladder should ex-
hibit incommensurate groundstate momenta at J ′ � J .
More important for our purposes is that a small gap, but
no other non-trivial plateaux are expected at strong cou-
pling. To see to which extent this is generic, we show in
Figure 7 numerical results obtained for the smaller value
of J ′ = 3J/2. Figure 8 shows the analogous result for PBC
of type C.

Since at J = J ′, neither PBC of type B nor PBC of
type C respect the sublattice structure of the triangular
lattice, there is no reason to expect those L which are a
multiple of three to play any particular rôle. We therefore
simply consider even L.

If one ignores the bold extrapolated curves in Figures 7
and 8, the finite-size magnetization curves look quite sim-
ilar at least if compared to the two boundary conditions
discussed before. Such a similarity of PBC of type B and
type C is also suggested by the fact that both of them can
be mapped to a single chain (6.1). However, there are defi-
nitely at least quantitative differences, as already the value
of the upper critical field shows: At ∆ = 1, J ′/J = 3/2,
one finds from (6.10) that huc/J = 5 + 3

8

√
3 ≈ 5.6495 for

PBC of type B, while minimization of (6.8) with r = 4
yields huc ≈ 6.1193J for PBC of type C.

The finite-size data for L = 4, 6 and 8 indicates a small
spin-gap at zero field. For PBC of type B, application of
a 1/L-extrapolation in the spirit of (6.12) leads to a gap
E ≈ 0.24J while the Shanks transform yields E ≈ 0.64J .
Though both methods agree on the presence of a gap, we

are not able to determine it accurately – by comparison we
conclude E/J = 0.44± 0.20 for PBC of type B. Similarly,
for PBC of type C, the Shanks transform yields E ≈ 0.27J
while from (6.12) one finds E ≈ 0.48J . Here, we use the
latter value though a large uncertainty should be kept in
mind.

While one observes clear plateaux with 〈M〉 6= 0 in Fig-
ures 5 and 6, it is not immediately clear from the finite-size
data of Figures 7 and 8 if such non-trivial plateaux survive
the thermodynamic limit. This issue therefore requires a
more detailed discussion. First we take a closer look at
〈M〉 = 1/3. For PBC of type B, the finite-size plateau
with L = 4, 6 and 8 is roughly (but not very well) fit-
ted by (6.11). More strongly, one finds a negative plateau
width if one tries to apply the extrapolation formula (6.12)
to its boundaries. This indicates that there is not even a
tiny plateau with 〈M〉 = 1/3 in the thermodynamic limit
L→∞. For PBC of type C in contrast, the plateau width
at L = 8 is actually larger than that at L = 6. We have
therefore drawn an 〈M〉 = 1/3 plateau in Figure 8 whose
boundaries have been determined using (6.12).

At 〈M〉 = 2/3 we have data for a further system size
(L = 10). If we discard the L = 4 data and ignore some
apparent non-monotonic finite-size effects we actually ob-
tain fairly good agreement with (6.11) in both cases. So,
we do not find a plateau at 〈M〉 = 2/3 in either of the two
cases.

Extrapolated magnetization curves are shown by the
bold lines in Figures 7 and 8. They have some remaining
wiggly features which are related to the fact that non-
monotonic finite-size effects may still be important at the
system sizes used for the extrapolation.

The absence of a plateau e.g. at 〈M〉 = 1/3 can be at-
tributed to enhanced translational symmetry: The N = 3
zig-zag ladder with PBC of type B can be mapped to a
single Heisenberg chain (6.1). A plateau at 〈M〉 = 1/3
would then require breaking of the enhanced translational
symmetry by l = 3 sites and a plateau at 〈M〉 = 2/3
would require the even larger period of l = 6 sites (com-
pare (1.1) where V = l due to the enhanced symmetry).
However, to the best of our knowledge spontaneous sym-
metry breaking with periods of more than two sites has
not been observed so far (at least for ordinary ladders it
is unlikely to occur [13]).

It should be mentioned though that the same argu-
ment can be applied to PBC of type C, where a plateau
with 〈M〉 = 1/3 seems likely. Furthermore, all versions
of PBC are very similar from the weak-coupling point of
view (compare Sect. 3). In particular, one would expect a
plateau with 〈M〉 = 1/3 for all versions of PBC if it ap-
pears for one of them in the weak-coupling region. Which
plateaux are actually absent and which ones present there-
fore needs further investigation.

7 Discussion and conclusion

In this paper we have analyzed zig-zag coupled chains us-
ing a range of field-theoretical and numerical techniques.
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Fig. 7. Same as Figure 6, but for PBC of type B.
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Fig. 8. Same as Figure 6, but for PBC of type C.

First, we have discussed the case of zero field and weak in-
terchain coupling where in a field-theoretical formulation
the most relevant interaction for the ordinary ladders is
replaced with a chirally asymmetric one [24]. In the SU(2)
symmetric case this chirally asymmetric term is marginal
and then current-current interaction terms (usually not
considered in the presence of the relevant terms that arise
in the normal ladders) have to be included in the RG anal-
ysis, leading us to our one-loop RG equations (2.10). In
this approximation, one sees that the effect of the chi-

rally asymmetric term is to push the system further into
the massive phase for the AF case, and to open a gap
for small J ′ < 0. The same is true for N ≥ 3, when all
the chains are (weakly) antiferromagnetically coupled in
an equal manner. For sufficiently small ∆ < 1, the zero
magnetization groundstate is a massless c = 1 theory, in
contrast to the N = 2 ladder with normal couplings.

We have then shown that this more relevant interac-
tion is restored by a magnetic field, dimerization or doping
with charge carriers. The latter variants of zig-zag ladders
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should therefore be similar to the usual spin ladders. We
have also analyzed the appearance of plateaux in the mag-
netization curves of N ≥ 3 zig-zag ladders. We have found
that the situation is similar to that encountered in the nor-
mal ladders (in the weak coupling limit) [13], except for
a trivial rescaling of the couplings which lead to slightly
different quantitative predictions for the opening points.

These considerations may also be relevant to the
description of experiments. Firstly, we have seen that
under very general conditions the normal perpendicu-
lar couplings are those that really matter. Secondly,
we have argued that dimerization along the legs (see
Fig. 2) might be an important feature in understand-
ing the magnetization experiments [28] on NH4CuCl3
(see also [20] for a related observation in the con-
text of the usual spin ladders with dimerization along
the chains). In the present context, this is suggested
by the limit of strong dimerization δ → 1 which
we have discussed in the appendix. Dimerization also
seems to be a small enough modification to be plausi-
ble, but this will have to be confirmed by a determi-
nation of the structure of NH4CuCl3 at low tempera-
tures.

The field-theoretical approach is complemented in a
second part by a numerical analysis. First, we have ana-
lyzed a two-leg zig-zag ladder without dimerization. For
positive J ′ we have confirmed known facts such as the
appearance of a spin-gap but no non-trivial plateaux in
the magnetization curve. The magnetized groundstates
exhibit two different types of behaviour: At small J ′ in-
commensurate groundstate momenta participate in the
magnetization process, while for small J all momenta
are commensurate. For the case of ferromagnetic cou-
pling J ′ < 0 we have found interesting new behaviour:
At small |J ′| spins flip in pairs and for this reason all
magnetized groundstates are commensurate. At larger |J ′|
more than two spins can flip simultaneously and at the
same time also incommensurate groundstate momenta be-
come relevant to the magnetization process. Finally, for
J ′ < −4J , the behaviour is completely ferromagnetic. The
‘phases’ with incommensurate groundstate momenta are
reminiscent of similar phenomena observed in a spin-one
chain [50,51]. It has been conjectured [50,53] that also the
two-leg zig-zag ladder gives rise to a two-component Lut-
tinger liquid, but at least in the weak-coupling region we
did not find evidence for more than one massless degree
of freedom.

We have then investigated the transition to satura-
tion in more detail and confirmed the universal DN-PT
behaviour (5.5). The only exception is J ′ = 4J where a
quartic behaviour (5.6) was already observed in [46]. This
modified exponent has a simple explanation in terms of
an exceptional behaviour of the single-spinwave dispersion
which appears not to have been noted before. In the region
of not too strong ferromagnetic J ′ < 0 spins flip in pairs
and this relation to the single-spinwave dispersion is lost.
It is therefore non-trivial that our numerical data for the
asymptotics of the magnetization curve is still consistent
with the DN-PT universal behaviour.

Finally, we have computed magnetization curves for
four different variants of a three-leg ladder. We observed a
remarkable dependence on the geometry of the interchain
coupling (see Figs. 5–8). Clear plateaux can be observed
in several cases while indications against the presence of
such plateaux were obtained in other situations3. We ex-
pect that the same types of commensurate and incommen-
surate phases as observed for the two-leg ladder are also
present in zig-zag ladders with three or more legs. This
is indicated e.g. by the analysis of single-spinwave exci-
tations for three-leg ladders, but would need verification.
Further new phenomena might appear for more than two
coupled chains.

All the observed plateaux can be interpreted in terms
of the quantization condition (1.1). The essence is en-
hanced translational symmetry in certain cases which in-
duced by frustration is then spontaneously broken (in
most cases to periods l ≤ 2). Specifically, for both the ordi-
nary and the zig-zag two-leg ladder at δ = 0 one then has a
translationally invariant unit cell containing V = 2 spins.
However, the interpretation is different: For zig-zag cou-
pling, translational symmetry is first enhanced by a factor
of two and then spontaneously broken by a period l = 2.
This also explains why one needs a dimerized interchain
coupling (0 < δ < 1) to have a plateau with 〈M〉 = 1/2 in
the two-leg zig-zag ladder [12,39,40] which is permitted
by (1.1) with N = 2, l = 2 only in the presence of dimer-
ization. Dimerization along the legs breaks translational
symmetry further to V = 4l. Frustration-induced sponta-
neous symmetry breaking to a period l = 2 then permits
the aforementioned appearance of further plateaux with
〈M〉 = 1/4 and 3/4.

To interpret our results for the three-leg zig-zag lad-
ders in terms of (1.1), one should substitute V = 3l for
OBC and PBC of type A and V = l for PBC of type B
and C. With one exception, all the plateaux sketched in
Figures 5–8 can then be naturally interpreted with peri-
ods l ≤ 2. Only the plateau with 〈M〉 = 1/3 for PBC of
type C in Figure 8 requires a period l = 3 which (if the
presence of this plateau is confirmed) would be the highest
observed period which we are aware of.

In fact, the numerical support for a plateau with
〈M〉 = 1/3 for N = 3 and PBC of type C is rather weak
and would deserve further attention. Conversely, the ab-
sence of a spin-gap in Figure 5 is not on safe grounds,
and the Abelian bosonization analysis would actually pre-
dict at least a small spin-gap in the weak-coupling region.
Another issue for N = 2 which requires further atten-
tion is that there is no numerical evidence yet for the
spin-gap predicted by field theory for weak ferromagnetic
J ′ < 0.

So far, we have just observed numerically for N = 3
that modifications in the boundary conditions have a
drastic effect on the magnetization process. This is in

3 It should be noted that due to non-monotonic finite-size
effects it is difficult to reliably exclude plateaux not only in the
cases discussed in Section 6 but also otherwise. Nevertheless,
the evidence for or against a plateau e.g. at 〈M〉 = 1/3 for
N = 3 depends strongly on the boundary conditions.
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contrast to ordinary spin ladders [13] and not apparent
in the field theoretical treatment. It may be necessary
to include higher loop corrections or to perform a non-
perturbative analysis of the RG equations in order to un-
derstand how the novel interaction term arising from the
zig-zag coupling gives for example rise to the differences
in the different versions of PBC.

In summary, on the one hand we believe that we have
exhibited interesting properties of zig-zag spin ladders. On
the other hand, there is a number of points which deserve
further attention. We hope that with this combination,
the present paper will stimulate further research on zig-
zag spin ladders.
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Appendix: Strong-coupling effective
Hamiltonian for a dimerized two-leg ladder

In this appendix we consider the Hamiltonian for a two-leg
zig-zag ladder with dimerized chains and coupling between
the chains:

H = J
2∑
i=1

L∑
x=1

(
1 + (−1)xδ

)
Si,x · Si,x+1

+ J ′
L∑
x=1

{(1 + δ′)S1,x · S2,x + (1− δ′)S1,x · S2,x+1}

− h
2∑
i=1

L∑
x=1

Szi,x. (A.1)

If we assume that J ′(1 ± δ′), J(1 − δ) � J(1 + δ), we
can describe the transition from 〈M〉 = 0 to 〈M〉 = 1
by an effective Hamiltonian following [3,12,16–19]. On
each ‘rung’ (a bond coupled with coefficient J(1 + δ))
we retain only two states: The singlet and the fully po-
larized state. With an appropriate choice of basis, the
first-order effective Hamiltonian can then be written as

(note that we include the external magnetic field h in ze-
roth order):

Heff. = J(1− δ)
L∑
x=1

{
1
4
(
S+
x S
−
x+2 + S−x S

+
x+2

)
+

1
4
SzxS

z
x+2

}

+ J ′ (1− δ′)
L/2∑
x=1

{
1
4
(
S+

2xS
−
2x+1 + S−2xS

+
2x+1

)
+

1
4
Sz2xS

z
2x+1

}

+ J ′ (1 + 3δ′)
L/2∑
x=1

1
4
(
S+

2x+1S
−
2x+2 + S−2x+1S

+
2x+2

)
+ J ′ (3 + δ′)

L/2∑
x=1

1
4
Sz2x+1S

z
2x+2

+
(

1
4
J(1− δ) +

J ′

2

)(
L

4
+

L∑
x=1

Szx

)
. (A.2)

The first term comes from one weak coupling J (1− δ)
along the two original chains, the second one from one
coupling J ′ (1− δ′) between the two chains and the third
and fourth terms arise from one coupling J ′ (1− δ′) plus
two couplings J ′ (1 + δ′) between the chains. The last term
is just a first-order correction to the external magnetic
field (apart from a trivial additive constant).

In equation (A.2) one recognizes again a two-leg zig-
zag ladder with dimerized coupling between the chains.
The coupling along the two chains is J(1 − δ) with an
effective XXZ anisotropy ∆eff. = 1/2. The coupling
between the two chains is not only dimerized but also
has an alternating XXZ anisotropy: J ′eff. = J ′(1 − δ′),
∆′eff. = 1/2 on even sites, J ′eff. = J ′(1 + 3δ′), ∆′eff. =
(3 + δ′)/(2(1 + 3δ′)) on the odd sites. For these val-
ues of parameters, the two-leg zig-zag ladder in a mag-
netic field has unfortunately not yet been studied in
detail. However, this mapping is still suggestive since
we know that a two-leg zig-zag ladder with dimerized
coupling between the chains can exhibit plateaux at
〈Meff.〉 = 0 and 〈Meff.〉 = ±1/2 [12,39,40]. This sug-
gests the possibility of the two-leg ladder with dimer-
ized coupling along the chains (A.1) having not only
plateaux at 〈M〉 = 0 and 〈M〉 = 1/2 (corresponding
to 〈Meff.〉 = 0) but also at 〈M〉 = 1/4 (〈Meff.〉 =
−1/2) and 〈M〉 = 3/4 (〈Meff.〉 = 1/2). This observa-
tion may be relevant to the magnetization experiments
on NH4CuCl3 [28], since these are precisely the observed
magnetization plateaux. However, in the strong dimeriza-
tion limit considered in this appendix, one would certainly
have a pronounced 〈M〉 = 0 plateau which is not ob-
served in NH4CuCl3. So, even if dimerization along the
chains should be important in this compound, it cannot
really lie in the region where the above mapping is appli-
cable.
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11504 (1998).

49. M. Usami, S. Suga, Phys. Lett. A 240, 85 (1998).
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